CLIMATE TRANSITION RISK AND THE ROLE OF BANK CAPITAL REQUIREMENTS

SALOMÓN GARCÍA-VILLEGAS¹ ENRIC MARTORELL¹

¹BANCO DE ESPAÑA

SED BARCELONA JUNE 2024

Disclaimer: The views expressed here do not necessarily represent the views of Banco de España or the Eurosystem

- Climate related risks are a growing concern among policymakers
 - \rightarrow Goals set to reach net-zero require distortionary policies \Rightarrow transition risks
 - → Financial stability concerns: asset revaluation, credit risk, bank failure, systemic risk

- What can macroprudential policy do?
 - → How complementary are Capital Requirements (CR) with Carbon Taxes (CT)?

- Climate related risks are a growing concern among policymakers
 - \rightarrow Goals set to reach net-zero require distortionary policies \Rightarrow transition risks
 - → Financial stability concerns: asset revaluation, credit risk, bank failure, systemic risk

- What can macroprudential policy do?
 - → How complementary are Capital Requirements (CR) with Carbon Taxes (CT)?

- Build a DSGE with financial intermediaries (Gertler and Karadi, 2011), bank failure (Clerc et al., 2015), and fossil and low-carbon energy sectors (Diluiso et al., 2021)
- Model climate transition risk: <u>carbon taxes</u> and heightened financial risk
- Assess the role of capital requirements in the presence of climate transition risk
 - 1. Optimal CR in the medium-run steady-state with carbon taxes
 - 2. Capital requirements as climate policy tool
 - 2. Full non-linear deterministic carbon transition

- Build a DSGE with financial intermediaries (Gertler and Karadi, 2011), bank failure (Clerc et al., 2015), and fossil and low-carbon energy sectors (Diluiso et al., 2021)
- **Model** climate transition risk: <u>carbon taxes</u> and heightened financial risk
- Assess the role of capital requirements in the presence of climate transition risk
 - 1. Optimal CR in the medium-run steady-state with carbon taxes
 - 2. Capital requirements as climate policy tool
 - 2. Full non-linear deterministic carbon transition

- Build a DSGE with financial intermediaries (Gertler and Karadi, 2011), bank failure (Clerc et al., 2015), and fossil and low-carbon energy sectors (Diluiso et al., 2021)
- **Model** climate transition risk: <u>carbon taxes</u> and heightened financial risk
- Assess the role of capital requirements in the presence of climate transition risk
 - 1. Optimal CR in the medium-run steady-state with carbon taxes
 - 2. Capital requirements as climate policy tool
 - 2. Full non-linear deterministic carbon transition

- ▶ With climate transition risk → asymmetrical increase in sectoral CR is optimal
- Optimal sectoral CR depend on energy inputs substitution capacity
- Short-run costs but medium-run gains from increasing sectoral CR along the transition
- Macroprudential policy can complement carbon taxes in achieving emission reduction targets while staying within its mandate
- Capital requirements alone cannot substitute for climate policy action

RELATED LITERATURE

- DSGE with financial frictions and climate risk: Benmir and Roman (2020), Diluiso et al. (2021), Carattini et al. (2023)
 - → Extend to include bank failure
- DSGE with bank failure: Clerc et al. (2015), Mendicino et al. (2018), Aguilar et al. (2019), Mendicino et al. (2020)
 - → Incorporate aggregate risk from differentiated energy inputs (fossil and low-carbon)
- Structural change and green sustainable growth: Acemoglu et al. (2012), Mattauch et al. (2015), Papageorgiou et al. (2017), Jo and Miftakhova (2022)
 - → Assess importance of energy inputs substitutability for optimal macroprudential policy

- DSGE with financial frictions and climate risk: Benmir and Roman (2020), Diluiso et al. (2021), Carattini et al. (2023)
 - → Extend to include bank failure
- DSGE with bank failure: Clerc et al. (2015), Mendicino et al. (2018), Aguilar et al. (2019), Mendicino et al. (2020)
 - → Incorporate aggregate risk from differentiated energy inputs (fossil and low-carbon)
- Structural change and green sustainable growth: Acemoglu et al. (2012), Mattauch et al. (2015), Papageorgiou et al. (2017), Jo and Miftakhova (2022)
 - → Assess importance of energy inputs substitutability for optimal macroprudential policy

- DSGE with financial frictions and climate risk: Benmir and Roman (2020), Diluiso et al. (2021), Carattini et al. (2023)
 - → Extend to include bank failure
- DSGE with bank failure: Clerc et al. (2015), Mendicino et al. (2018), Aguilar et al. (2019), Mendicino et al. (2020)
 - → Incorporate aggregate risk from differentiated energy inputs (fossil and low-carbon)
- Structural change and green sustainable growth: Acemoglu et al. (2012), Mattauch et al. (2015), Papageorgiou et al. (2017), Jo and Miftakhova (2022)
 - → Assess importance of energy inputs substitutability for optimal macroprudential policy

- ▶ 3 types of capital (K_Y, K_L, K_F) + fossil natural resources (X) + labor (N)
- Elastic supply of fossil natural resources $P_{X,t}(X_t, P_{E_F,t}, E_{F,t}, \tau_{X,t})$
- Fossil natural resources = Emissions
- Banks directly invest in K_Y , K_L , K_F (Gertler and Karadi, 2011)

- ▶ 3 types of capital (K_Y, K_L, K_F) + fossil natural resources (X) + labor (N)
- Elastic supply of fossil natural resources $P_{X,t}(X_t, P_{E_F,t}, E_{F,t}, \tau_{X,t})$
- Fossil natural resources = Emissions
- Banks directly invest in K_Y , K_L , K_F (Gertler and Karadi, 2011)

- ▶ 3 types of capital (K_Y, K_L, K_F) + fossil natural resources (X) + labor (N)
- Elastic supply of fossil natural resources $P_{X,t}(X_t, P_{E_F,t}, E_{F,t}, \tau_{X,t})$
- Fossil natural resources = Emissions
- Banks directly invest in K_Y , K_L , K_F (Gertler and Karadi, 2011)

- ▶ 3 types of capital (K_Y, K_L, K_F) + fossil natural resources (X) + labor (N)
- Elastic supply of fossil natural resources $P_{X,t}(X_t, P_{E_F,t}, E_{F,t}, \tau_{X,t})$
- Fossil natural resources = Emissions
- Banks directly invest in K_Y, K_L, K_F (Gertler and Karadi, 2011)

- ► Households maximize $\mathbb{E}_t \sum_{i=0}^{\infty} \beta^{t+i} U(C_t, L_t)$ subject to the budget constraint
- Hold bank deposits D_t and can invest in physical capital, $S_{i,t}^H$ by paying a management fee $\zeta_{j,t}$
- Bankers (Gertler and Karadi, 2011) invest their wealth NW_{j,t} in bank equity in exchange of a return ρ_{j,t+1}

$$NW_t = \Theta \sum_j \rho_{j,t} NW_{j,t-1} + \iota_t$$

- ► Households maximize $\mathbb{E}_t \sum_{i=0}^{\infty} \beta^{t+i} U(C_t, L_t)$ subject to the budget constraint
- Hold bank deposits D_t and can invest in physical capital, $S_{i,t}^H$ by paying a management fee $\zeta_{j,t}$
- Bankers (Gertler and Karadi, 2011) invest their wealth NW_{j,t} in bank equity in exchange of a return ρ_{j,t+1}

$$NW_t = \Theta \sum_j \rho_{j,t} NW_{j,t-1} + \iota_t$$

- One period ex-ante identical ventures owned by bankers
- Enjoy limited liability \implies Bank specialization $j \in \{Y, L, F\}$
- Subject to risk on the net return from their investments S^B_{i,t}
 - \rightarrow aggregate risk $R_{j,t+1}Q_{j,t}$
 - → idiosyncratic risk $\omega_{j,t+1} \sim LogNormal(-\frac{\sigma_{j,t}}{2}, \tilde{\sigma}_{j,t})$

$$NPV_{j,t} = \mathbb{E}_{t} \Big[\Lambda_{t+1}^{B} \max \left[\omega_{j,t+1} \underbrace{R_{j,t+1} Q_{j,t} S_{j,t}^{B}}_{\text{return on assets}} - \underbrace{R_{t}^{D} D_{j,t}}_{\text{liability repayments}} , 0 \right] - \underbrace{v_{t} NW_{j,t}}_{\text{cost of capital}} \Big]$$

► Balance sheet constraint, $Q_{j,t}S_{j,t}^B = NW_{j,t} + D_{j,t}$

• Regulatory capital constraint, $NW_{j,t} \ge \Phi_{j,t}Q_{j,t}S_{j,t}^{B}$

- One period ex-ante identical ventures owned by bankers
- Enjoy limited liability \implies Bank specialization $j \in \{Y, L, F\}$
- Subject to risk on the net return from their investments S^B_{i,t}
 - \rightarrow aggregate risk $R_{j,t+1}Q_{j,t}$
 - → idiosyncratic risk $\omega_{j,t+1} \sim LogNormal(-\frac{\sigma_{j,t}}{2}, \widetilde{\sigma}_{j,t})$

$$NPV_{j,t} = \mathbb{E}_t \Big[\Lambda_{t+1}^B \max \left[\frac{\omega_{j,t+1}}{R_{j,t+1}} \frac{R_{j,t+1}Q_{j,t}S_{j,t}^B}{R_{j,t+1}} - \frac{R_t^D D_{j,t}}{R_t^D D_{j,t}} , 0 \right] - \underbrace{v_t NW_{j,t}}_{\text{cost of capital}} \Big]$$

- ► Balance sheet constraint, $Q_{j,t}S_{j,t}^B = NW_{j,t} + D_{j,t}$
- Regulatory capital constraint, $NW_{j,t} \ge \phi_{j,t}Q_{j,t}S_{j,t}^B$

- One period ex-ante identical ventures owned by bankers
- Enjoy limited liability \implies Bank specialization $j \in \{Y, L, F\}$
- Subject to risk on the net return from their investments S_{it}^B
 - \rightarrow aggregate risk $R_{i,t+1}Q_{i,t}$
 - → aggregate risk $H_{j,t+1} \omega_{j,t}$ → idiosyncratic risk $\omega_{j,t+1} \sim LogNormal(-\frac{\widetilde{\sigma}_{j,t}^2}{2}, \widetilde{\sigma}_{j,t})$ $NPV_{j,t} = \mathbb{E}_t \left[\Lambda_{t+1}^B \max \left[\frac{\omega_{j,t+1}}{\sum_{r \in turn \text{ on assets}}} \frac{R_{j,t+1}^D Q_{j,t} S_{j,t}^B}{\text{liability repayments}} \frac{R_t^D D_{j,t}}{\sum_{cost \text{ of capital}}} \right] \underbrace{v_t NW_{j,t}}_{cost \text{ of capital}} \right]$

- One period ex-ante identical ventures owned by bankers
- Enjoy limited liability \implies Bank specialization $j \in \{Y, L, F\}$
- Subject to risk on the net return from their investments S_{it}^B
 - \rightarrow aggregate risk $R_{i,t+1}Q_{i,t}$
 - → aggregate risk $H_{j,t+1} \omega_{j,t}$ → idiosyncratic risk $\omega_{j,t+1} \sim LogNormal(-\frac{\widetilde{\sigma}_{j,t}^2}{2}, \widetilde{\sigma}_{j,t})$ $NPV_{j,t} = \mathbb{E}_t \left[\Lambda_{t+1}^B \max \left[\frac{\omega_{j,t+1}}{\sum_{return on assets}} \frac{R_t^D D_{j,t}}{\sum_{return on assets}} , 0 \right] \underbrace{v_t NW_{j,t}}_{\text{cost of capital}} \right]$
- Balance sheet constraint, $Q_{i,t}S^B_{i,t} = NW_{i,t} + D_{i,t}$
- ▶ Regulatory capital constraint, $NW_{j,t} \ge \phi_{j,t}Q_{j,t}S_{j,t}^B$

- Bank performance is affected by energy prices (Nasim et al., 2023)
- Energy-price risk channel

$$\tilde{\sigma}_{j,t} = \sigma_j [P_{E_j,t}]^{\beta_j}$$

- → The cross-sectional volatility of banks' idiosyncratic return risk $\tilde{\sigma}_{j,t}$ depends upon a time-invariant component σ_j and the level of sectoral energy prices $P_{E_i,t}$ weighted by β_j
- Tight link between the energy sector and the stability of the banking sector

- Bank performance is affected by energy prices (Nasim et al., 2023)
- Energy-price risk channel

$$\widetilde{\sigma}_{j,t} = \sigma_j [P_{E_j,t}]^{\beta_j}$$

- → The cross-sectional volatility of banks' idiosyncratic return risk $\tilde{\sigma}_{j,t}$ depends upon a time-invariant component σ_j and the level of sectoral energy prices $P_{E_i,t}$ weighted by β_j
- Tight link between the energy sector and the stability of the banking sector

- Bank performance is affected by energy prices (Nasim et al., 2023)
- Energy-price risk channel

$$\widetilde{\sigma}_{j,t} = \sigma_j [P_{E_j,t}]^{\beta_j}$$

- → The cross-sectional volatility of banks' idiosyncratic return risk $\tilde{\sigma}_{j,t}$ depends upon a time-invariant component σ_j and the level of sectoral energy prices $P_{E_i,t}$ weighted by β_j
- Tight link between the energy sector and the stability of the banking sector

- Macroprudential authority sets capital requirements: $\phi_{Y,t}$, $\phi_{F,t}$ and $\phi_{L,t}$
 - \rightarrow Sectoral CR { $\phi_{Y,t}, \phi_{F,t}, \phi_{L,t}$ }
 - \rightarrow General CR $\phi_t = \phi_{Y,t} = \phi_{F,t} = \phi_{L,t}$
- Fiscal authority balances budget
 - \rightarrow Losses from the Deposit Insurance Scheme (DIS)
 - \rightarrow Revenue from carbon tax is fully rebated to the households

- Macroprudential authority sets capital requirements: $\phi_{Y,t}$, $\phi_{F,t}$ and $\phi_{L,t}$
 - \rightarrow Sectoral CR { $\phi_{Y,t}, \phi_{F,t}, \phi_{L,t}$ }
 - \rightarrow General CR $\phi_t = \phi_{Y,t} = \phi_{F,t} = \phi_{L,t}$
- Fiscal authority balances budget
 - → Losses from the Deposit Insurance Scheme (DIS)
 - → Revenue from carbon tax is fully rebated to the households

Energy-price risk channel

- $\rightarrow\,$ Tight link between energy prices and bank stability
- Limited liability + deposit insurance
 - → Banks want to lever up to the regulatory limit
- Bank failure is costly
 - → Deadweight costs (resolution + NBFI fees)
 - → Banks' deposit funding costs increases with average risk of bank failure
- Macroprudential trade-off
 - ightarrow reducing costs of bank failure vs disrupting the supply of bank credit

Energy-price risk channel

→ Tight link between energy prices and bank stability

Limited liability + deposit insurance

- → Banks want to lever up to the regulatory limit
- Bank failure is costly
 - → Deadweight costs (resolution + NBFI fees)
 - → Banks' deposit funding costs increases with average risk of bank failure
- Macroprudential trade-off
 - ightarrow reducing costs of bank failure vs disrupting the supply of bank credit

Energy-price risk channel

→ Tight link between energy prices and bank stability

Limited liability + deposit insurance

→ Banks want to lever up to the regulatory limit

Bank failure is costly

- → Deadweight costs (resolution + NBFI fees)
- → Banks' deposit funding costs increases with average risk of bank failure

Macroprudential trade-off

ightarrow reducing costs of bank failure vs disrupting the supply of bank credit

Energy-price risk channel

→ Tight link between energy prices and bank stability

Limited liability + deposit insurance

→ Banks want to lever up to the regulatory limit

Bank failure is costly

- → Deadweight costs (resolution + NBFI fees)
- $\rightarrow\,$ Banks' deposit funding costs increases with average risk of bank failure

Macroprudential trade-off

→ reducing costs of bank failure vs disrupting the supply of bank credit

Production: Euro Area

Description	Parameter	Value	Source/Target
Energy production			
Weight of fossil energy	α_F	0.8	Coenen et al. (2023)
Weight of fossil natural resources	α_X	0.3	Coenen et al. (2023)
ES between energy inputs	ΦE	3	Papageorgiou et al. (2017)
ES between capital and resources	φ _F	0.3	Coenen et al. (2023)

- Financial sector: Euro Area
 - → Bank failure rate of 0.67% (ann.) in all sectors (Mendicino et al., 2020)
 - → Optimal General CR, ϕ = 9.4%

Production: Euro Area

Description	Parameter	Value	Source/Target
Energy production			
Weight of fossil energy	α _F	0.8	Coenen et al. (2023)
Weight of fossil natural resources	α_X	0.3	Coenen et al. (2023)
ES between energy inputs	ΦE	3	Papageorgiou et al. (2017
ES between capital and resources	φ _F	0.3	Coenen et al. (2023)

- Financial sector: Euro Area
 - → Bank failure rate of 0.67% (ann.) in all sectors (Mendicino et al., 2020)
 - → Optimal General CR, $\phi = 9.4\%$

- 1. Carbon Tax steady state
- 2. Optimal Capital Requirements with Carbon Taxes
- 3. How effective is macroprudential policy as sole climate policy tool?
- 4. Capital Requirements over the Carbon Transition

CARBON TAX STEADY STATE

► Carbon Tax $(\tau_{\chi,t}) \longrightarrow 35\%$ emission reduction (European Commission, 2023)

- Large credit reallocation from fossil to low-carbon sector
- Increase in bank fragility
- GDP falls by 2%

		СТ
Carbon Emissions, % Δ .		
Price of Fossil Energy, %∆.		25.7
Price of Low-Carbon Energy, $\%\Delta$.		
Price of Energy Bundle, $\%\Delta$.		19.2
Fossil Energy, ratio (%).		
GDP, %Δ.		-2.12
Welfare, cons. equivalent $\%\Delta$.		
Fossil Bank Credit, %∆.		-21.2
Low-Carbon Bank Credit, $\%\Delta$.		62.4
NBFI, ratio (%).	20.3	23.9
Bank Failure, annual rate (%).	0.67	2.90

► Carbon Tax $(\tau_{\chi,t}) \longrightarrow 35\%$ emission reduction (European Commission, 2023)

- Large credit reallocation from fossil to low-carbon sector
- Increase in bank fragility
- GDP falls by 2%

	В	СТ
Carbon Emissions, $\%\Delta$.	-	-35.3
Price of Fossil Energy, % Δ .	-	25.7
Price of Low-Carbon Energy, % Δ .	-	0.87
Price of Energy Bundle, Δ .	-	19.2
Fossil Energy, ratio (%).	80.0	68.3
GDP, %∆.	-	-2.12
Welfare, cons. equivalent % Δ .	-	-2.22
Fossil Bank Credit, %∆.	-	-21.2
Low-Carbon Bank Credit, $\%\Delta$.	-	62.4
NBFI, ratio (%).	20.3	23.9
Bank Failure, annual rate (%).	0.67	2.90

What is the optimal level of capital requirements with carbon taxes?

- Welfare gains from asymmetrical increase in sectoral CR
- Optimal CR indirectly support a stronger green credit transition

	СТ	CT + GCR	CT + SCR
Non-Energy CR, φ _Y . Δbp.		145	142
		145	
		145	29
Fossil Energy, ratio (%).			
	-2.12	-2.19	-2.16
Welfare, cons. equivalent % Δ .			
Fossil Bank Credit, %∆.		-22.4	
Low-Carbon Bank Credit, %∆.	62.4		
NBFI, ratio (%).	23.9	24.5	24.2
Bank Failure, annual rate (%).			

What is the optimal level of capital requirements with carbon taxes?

- Welfare gains from asymmetrical increase in sectoral CR
- Optimal CR indirectly support a stronger green credit transition

	В	СТ	CT + GCR	CT + SCR
Non-Energy CR, ϕ_Y . Δ bp.	-	-	145	142
Fossil CR, ϕ_F . Δbp .	-	-	145	183
Low-Carbon CR, ϕ_L . Δbp .	-	-	145	29
Carbon Emissions, %∆.	-	-35.3	-35.7	-36.0
Price of Fossil Energy, $\%\Delta$.	-	25.7	25.8	26.0
Price of Low-Carbon Energy, $\%\Delta$.	-	0.87	0.80	0.23
Price of Energy Bundle, %∆.	-	19.2	19.3	19.3
Fossil Energy, ratio (%).	80.0	68.3	68.2	67.8
GDP, %∆.	-	-2.12	-2.19	-2.16
Welfare, cons. equivalent Δ .	-	-2.22	-2.03	-1.98
Fossil Bank Credit, %∆.	-	-21.2	-22.4	-23.5
Low-Carbon Bank Credit, %∆.	-	62.4	62.9	72.0
NBFI, ratio (%).	20.3	23.9	24.5	24.2
Bank Failure, annual rate (%).	0.67	2.90	0.88	0.86

What is the optimal level of capital requirements with carbon taxes?

- Welfare gains from asymmetrical increase in sectoral CR
- Optimal CR indirectly support a stronger green credit transition

	В	СТ	CT + GCR	CT + SCR
Non-Energy CR, ϕ_Y . Δ bp.	-	-	145	142
Fossil CR, ϕ_F . Δbp .	-	-	145	183
Low-Carbon CR, ϕ_L . Δbp .	-	-	145	29
Carbon Emissions, %∆.	-	-35.3	-35.7	-36.0
Price of Fossil Energy, $\%\Delta$.	-	25.7	25.8	26.0
Price of Low-Carbon Energy, $\%\Delta$.	-	0.87	0.80	0.23
Price of Energy Bundle, Δ .	-	19.2	19.3	19.3
Fossil Energy, ratio (%).	80.0	68.3	68.2	67.8
GDP, %∆.	-	-2.12	-2.19	-2.16
Welfare, cons. equivalent Δ .	-	-2.22	-2.03	-1.98
Fossil Bank Credit, %∆.	-	-21.2	-22.4	-23.5
Low-Carbon Bank Credit, %∆.	-	62.4	62.9	72.0
NBFI, ratio (%).	20.3	23.9	24.5	24.2
Bank Failure, annual rate (%).	0.67	2.90	0.88	0.86

How does optimal macroprudential policy depend on the economy's capacity to substitute energy inputs?

- With higher capacity to substitute energy inputs:
 - Smaller optimal increase in fossil and non-energy CR
 - → Larger optimal increase in low-carbon CR

	Low	Medium	High
Elasticity of substitution fossil-clean	$\varphi_E = 1.5$	$\varphi_E = 3$	$\varphi_E = 5$
Non-Energy CR, ϕ_Y . Δ bp.	190	142	103
Fossil CR, φ _F . Δbp.	254	172	119
Low-Carbon CR, ϕ_L . Δbp .	0	29	58
Carbon Emissions, $\%\Delta$.	-35.9	-36.0	-35.9
Price of Fossil Energy, %∆.	34.3	26.0	19.2
Price of Low-Carbon Energy, $\%\Delta$.	0.11	0.23	0.35
Price of Energy Bundle, %∆.	26.2	19.3	13.9
Fossil Energy, ratio (%).	72.8	67.8	63.7
GDP, %∆.	-3.11	-2.16	-1.40
Fossil Bank Credit, %∆.	-19.5	-23.5	-26.7
Low-Carbon Bank Credit, %Δ.	31.0	72.0	104.5
NBFI, ratio (%).	25.7	24.2	23.1
Bank Failure, annual rate.	0.94	0.86	0.81

How does optimal macroprudential policy depend on the economy's capacity to substitute energy inputs?

- With higher capacity to substitute energy inputs:
 - → Smaller optimal increase in fossil and non-energy CR
 - → Larger optimal increase in low-carbon CR

	Low	Medium	High
Elasticity of substitution fossil-clean	$\varphi_E = 1.5$	$\varphi_E = 3$	$\varphi_E = 5$
Non-Energy CR, ϕ_Y . Δbp .	190	142	103
Fossil CR, ϕ_F . Δbp .	254	172	119
Low-Carbon CR, ϕ_L . Δbp .	0	29	58
Carbon Emissions, $\%\Delta$.	-35.9	-36.0	-35.9
Price of Fossil Energy, %∆.	34.3	26.0	19.2
Price of Low-Carbon Energy, $\%\Delta$.	0.11	0.23	0.35
Price of Energy Bundle, $\%\Delta$.	26.2	19.3	13.9
Fossil Energy, ratio (%).	72.8	67.8	63.7
GDP, %Δ.	-3.11	-2.16	-1.40
Fossil Bank Credit, %∆.	-19.5	-23.5	-26.7
Low-Carbon Bank Credit, $\%\Delta$.	31.0	72.0	104.5
NBFI, ratio (%).	25.7	24.2	23.1
Bank Failure, annual rate.	0.94	0.86	0.81

How effective is macroprudential policy as sole climate policy tool?

50%	Fossil	CR	

- → 78% reduction in fossil bank lending ...
- → ... only 20% emission reduction

Elasticity of substitution fossil-clean	$\varphi_E = 1.5$		
Fossil CR, ϕ_F .			
Carbon Emissions, %∆.	-7.4	-12.3	-19.8
Price Fossil Energy, %∆.	17.4	17.4	17.4
Price Low-Carbon Energy, $\%\Delta$.	0.45	0.44	0.42
Price Energy, %∆.	20.4	13.3	12.8
Fossil Energy, ratio (%).	76.2	71.9	65.4
GDP, %Δ.	-1.87	-1.71	-1.45
Fossil Bank Credit, %∆.		-70.7	
Low-Carbon Bank Credit, $\%\Delta$.	12.0	43.9	
NBFI, ratio (%).		31.8	31.5
Bank Failure, annual rate.	1.07	1.04	

How effective is macroprudential policy as sole climate policy tool?

▶ 50% Fossil CR

	Elasticity of substitution fossil-clean	$\varphi_E = 1.5$	$\varphi_E = 3$	$\varphi_E = 5$
	Fossil CR, ϕ_F .	50	50	50
	Carbon Emissions, $\%\Delta$.	-7.4	-12.3	-19.8
0% Fossil CR	Price Fossil Energy, %∆.	17.4	17.4	17.4
	Price Low-Carbon Energy, $\%\Delta$.	0.45	0.44	0.42
→ 78% reduction in fossil bank	Price Energy, %∆.	20.4	13.3	12.8
lending	Fossil Energy, ratio (%).	76.2	71.9	65.4
\rightarrow only 20% emission	GDP, %∆.	-1.87	-1.71	-1.45
reduction	Fossil Bank Credit, %∆.	-65.6	-70.7	-78.6
	Low-Carbon Bank Credit, $\%\Delta$.	12.0	43.9	92.5
	NBFI, ratio (%).	32.0	31.8	31.5
	Bank Failure, annual rate.	1.07	1.04	0.99

1. Full non-linear deterministic transition path from Benchmark to Carbon Tax

→ Carbon tax unexpectedly introduced 2 years from now

- 2. **Compare** transition path to Carbon Tax **vs** Carbon Tax + Optimal SCR
 - \rightarrow Sectoral CR are phased-in in the first 4 quarters to their optimal level

1. Full non-linear deterministic transition path from Benchmark to Carbon Tax

→ Carbon tax unexpectedly introduced 2 years from now

- 2. **Compare** transition path to Carbon Tax **vs** Carbon Tax + Optimal SCR
 - → Sectoral CR are phased-in in the first 4 quarters to their optimal level

Year	Bank (F) Credit ^a	NBFI (F) Credit ^a	PD ^b	GDP ^a	Welfare ^a
1	-7.98	0.6	-1.00	-0.04	-0.05
3	-6.62	0.8	-1.40	-0.05	-0.01
10	-5.68	1.4	-1.78	-0.1	0.2
15	-5.92	1.8	-2.00	-0.2	0.4

Differences between Carbon Tax vs Carbon Tax + Optimal SCR

Optimal sectoral CR entails short-run costs but medium-run gains

- We asses the role of macroprudential policy in DSGE model with financial frictions, bank default and energy sectors
- ▶ With climate transition risk → asymmetrical increase in sectoral CR is optimal
- Optimal sectoral CR depend on energy inputs substitution capacity
- Short-run costs but medium-run gains from increasing sectoral CR along the transition
- Macroprudential policy can complement carbon taxes in achieving emission reduction targets while staying within its mandate
- Capital requirements alone cannot substitute for climate policy action

BENCHMARK CALIBRATION

Description	Parameter	Value	Source/Target	
Households				
Discount factor	β	0.995	2% risk-free rate	
Disutility of labor	η	1	Normalization	
Frisch elasticity of labor	ν	1	Carattini et al. (2023)	
Risk aversion	σ	2	Carattini et al. (2023)	
Government expenditure	G	0.10	C/Y = 0.56 (Fagan et al., 2005)	
Final output				
Weight of energy sector	α _E	0.1	Eurostat (2013-2020)	
ES between energy and non-energy	φγ	0.5	Diluiso et al. (2021)	
Weight of capital	αγ	0.36	Carattini et al. (2023)	
Non-Energy Factors Efficiency	A_Y	0.33	<i>Y</i> = 1	
Energy production				
Weight of fossil energy	α_F	0.8	Coenen et al. (2023)	
Weight of fossil natural resources	α_X	0.3	Coenen et al. (2023)	
ES between energy inputs	ΦΕ	3	Papageorgiou et al. (2017)	
ES between capital and resources	φ _F	0.3	Coenen et al. (2023)	
Energy Capital Efficiency	A_F, A_L	$\{0.02, 0.03\}$	$P_{E_F} = P_{E_L} = 1$	
Capital producers				
Capital adjustment cost	ρ_Y, ρ_F, ρ_L	{4.57, 4.57, 4.57}	Mendicino et al. (2020)	
Depreciation rate	$\delta_Y, \delta_L, \delta_F$	$\{0.03, 0.025, 0.02\}$	Fagan et al. (2005); Diluiso et al. (2021)	
Financial sector				
Share of insured deposits	к	0.54	Demirgüç-Kunt et al. (2015)	
Survival rate of banks	θ	0.84	Bank price-to-book ratio of 1.1	
Transfers from HH to bankers	х	0.87	Bank return on equity of 7.9%	
OTD iid haale siels		(0,000,0,000,0,000)	0.070/ heals feilure sets	

▶ 10% increase in $P_{X_F} \rightarrow 0.3\%$ fall in GDP (Peersman and Van Robays, 2009, 2012)

THE MODEL: DIAGRAM

